Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445706

RESUMO

Waste banknote paper is a residue from the banking industry that cannot be recycled due to the presence of ink, microbial load and special coating that provides protection against humidity. As a result, waste banknote paper ends up being burned or buried, which brings environmental impacts, mainly caused by the presence of heavy metals in its composition. To minimize the environmental impacts that come from the disposal of waste banknote paper, this study proposes to produce value-added products (bioethanol and biogas) from waste banknote paper. For this, the effect of ink and pretreatment conditions on bioethanol and biomethane yields were analyzed. Waste banknote paper provided by the Central Bank of Iran was used. The raw material with ink (WPB) and without ink (WPD) was pretreated using sulfuric acid at different concentrations (1%, 2%, 3%, and 4%) and the nitrogen explosive decompression (NED) at different temperatures (150 °C, 170 °C, 190 °C, and 200 °C). The results show that the use of NED pretreatment in WPD resulted in the highest glucose concentration of all studies (13 ± 0.19 g/L). The acid pretreatment for WPB showed a correlation with the acid concentration. The highest ethanol concentration was obtained from the fermentation using WPD pretreated with NED (6.36 ± 0.72 g/L). The maximum methane yields varied between 136 ± 5 mol/kg TS (2% acid WPB) and 294 ± 4 mol/kg TS (3% acid WPD). Our results show that the presence of ink reduces bioethanol and biogas yields and that the chemical-free NED pretreatment is more advantageous for bioethanol and biogas production than the acid pretreatment method. Waste banknote paper without ink is a suitable feedstock for sustainable biorefinery processes.

2.
Waste Manag ; 102: 868-883, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31835064

RESUMO

Almost 500 municipal solid waste incineration plants in the EU, Norway and Switzerland generate about 17.6 Mt/a of incinerator bottom ash (IBA). IBA contains minerals and metals. Metals are mostly separated and sold to the scrap market and minerals are either disposed of in landfills or utilised in the construction sector. Since there is no uniform regulation for IBA utilisation at EU level, countries developed own rules with varying requirements for utilisation. As a result from a cooperation network between European experts an up-to-date overview of documents regulating IBA utilisation is presented. Furthermore, this work highlights the different requirements that have to be considered. Overall, 51 different parameters for the total content and 36 different parameters for the emission by leaching are defined. An analysis of the defined parameter reveals that leaching parameters are significantly more to be considered compared to total content parameters. In order to assess the leaching behaviour nine different leaching tests, including batch tests, up-flow percolation tests and one diffusion test (monolithic materials) are in place. A further discussion of leaching parameters showed that certain countries took over limit values initially defined for landfills for inert waste and adopted them for IBA utilisation. The overall utilisation rate of IBA in construction works is approximately 54 wt%. It is revealed that the rate of utilisation does not necessarily depend on how well regulated IBA utilisation is, but rather seems to be a result of political commitment for IBA recycling and economically interesting circumstances.


Assuntos
Cinza de Carvão , Incineração , Europa (Continente) , Noruega , Resíduos Sólidos , Suíça
3.
Nanomaterials (Basel) ; 9(1)2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30585202

RESUMO

The chemical composition of the test medium as well as the presence of algae (microcrustaceans' food) affects the bioavailability and thus the toxicity of metal nanoparticles (NP) to freshwater microcrustaceans. This study evaluated the effect of the addition of algae (Rapidocelis subcapitata at 7.5 × 106 cells/mL) on the toxicity of CuO (primary size 22⁻25 nm) and ZnO NP (10⁻15 nm) to planktic Daphnia magna and benthic Heterocypris incongruens in artificial (mineral) and natural freshwater (lake water). The toxicity of ionic controls, CuSO4 and ZnSO4, was evaluated in parallel. When algae were added and the toxicity was tested in mineral medium, 48 h EC50 of CuO and ZnO NP to D. magna was ~2 mg metal/L and 6-day LC50 of H. incongruens was 1.1 mg metal/L for CuO and 0.36 mg metal/L for ZnO. The addition of algae to D. magna test medium mitigated the toxicity of CuO and ZnO NP 4⁻11-fold when the test was conducted in natural water but not in the artificial freshwater. The addition of algae mitigated the toxicity of CuSO4 (but not ZnSO4) to D. magna at least 3-fold, whatever the test medium. In the 6-day H. incongruens tests (all exposures included algae), only up to 2-fold differences in metal NP and salt toxicity between mineral and natural test media were observed. To add environmental relevance to NP hazard assessment for the freshwater ecosystem, toxicity tests could be conducted in natural water and organisms could be fed during the exposure.

4.
Colloids Surf B Biointerfaces ; 169: 222-232, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29778961

RESUMO

Application of efficient antimicrobial surfaces has been estimated to decrease both, the healthcare-associated infections and the spread of antibiotic-resistant bacteria. In this paper, we prepared ZnO and ZnO/Ag nanoparticle covered surfaces and evaluated their antimicrobial efficacy towards a Gram-negative bacterial model (Escherichia coli), a Gram-positive bacterial model (Staphylococcus aureus) and a fungal model (Candida albicans) in the dark and under UVA illumination. The surfaces were prepared by spin coating aliquots of ZnO and ZnO/Ag nanoparticle suspensions onto glass substrates. Surfaces contained 2 or 20 µg Zn/cm2 and 0-0.02 µg Ag/cm2. No significant antimicrobial activity of the surfaces, except of those with the highest Ag or Zn content was observed in the dark. On the other hand, UVA illuminated surfaces containing 20 µg Zn/cm2 and 2 µg Zn plus 0.02 µg Ag/cm2 caused >3 log decrease in the viable counts of E. coli and S. aureus in 30 min. As proven by brilliant blue FCF dye degradation and elemental analysis of the surfaces, this remarkable antimicrobial activity was a combined result of photocatalytic effect and release of Zn and Ag ions from surfaces. Surfaces retained significant antibacterial and photocatalytic properties after several usage cycles. Compared to bacteria, yeast C. albicans was significantly less sensitive to the prepared surfaces and only about 1 log reduction of viable count was observed after 60 min UVA illumination. In conclusion, the developed ZnO/Ag surfaces exhibit not only high antibacterial activity but also some antifungal activity.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Nanocompostos/química , Prata/farmacologia , Raios Ultravioleta , Óxido de Zinco/farmacologia , Antibacterianos/química , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Óxido de Zinco/química
5.
Waste Manag Res ; 35(11): 1175-1182, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28956716

RESUMO

The fractionation of metals in the fine fraction (<10 mm) of excavated waste from an Estonian landfill was carried out to evaluate the metal (Pb and Cu) contents and their potential towards not only mobility but also possibilities of recovery/extraction. The fractionation followed the BCR (Community Bureau of Reference) sequential extraction, and the exchangeable (F1), reducible (F2), oxidizable (F3) and residual fractions were determined. The results showed that Pb was highly associated with the reducible (F2) and oxidizable (F3) fractions, suggesting the potential mobility of this metal mainly when in contact with oxygen, despite the low association with the exchangeable fraction (F1). Cu has also shown the potential for mobility when in contact with oxygen, since high associations with the oxidizable fraction (F3) were observed. On the other hand, the mobility of metals in excavated waste can be seen as beneficial considering the circular economy and recovery of such valuables back into the economy. To conclude, not only the total concentration of metals but also a better understanding of fractionation and in which form metals are bound is very important to bring information on how to manage the fine fraction from excavated waste both in terms of environmental impacts and also recovery of such valuables in the economy.


Assuntos
Cobre/análise , Monitoramento Ambiental , Chumbo/análise , Poluentes do Solo/análise , Instalações de Eliminação de Resíduos , Fracionamento Químico , Resíduos Industriais/análise , Metais Pesados/análise
6.
Environ Pollut ; 225: 481-489, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28318795

RESUMO

Silver nanoparticles (AgNPs) are highly toxic to aquatic organisms, however, there is no consensus whether the toxicity is caused solely by released Ag-ions or also by reactive oxygen species (ROS). Here, the effects of protein-coated AgNPs (14.6 nm, Collargol) were studied on viability, oxidative stress and gene expression levels in wild type strains (CU427 and CU428) of ciliate Tetrahymena thermophila. Viability-based 24 h EC50 values of AgNPs were relatively high and significantly different for the two strains: ∼100 mg/L and ∼75 mg/L for CU427 and CU428, respectively. Similarly, the expression profiles of oxidative stress (OS) related genes in the two strains were different. However, even though some OS related genes were overexpressed in AgNP-exposed ciliates, intracellular ROS level was not elevated, possibly due to efficient cellular antioxidant defence mechanisms. Compared to OS related genes, metallothionein genes were upregulated at a considerably higher level (36 versus 5000-fold) suggesting that Ag-ion mediated toxicity mechanism prevailed over OS related pathway. Also, comparison between Ag-ions released from AgNPs at EC50 concentration and the respective EC50 values of AgNO3 indicated that Ag-ions played a major role in the toxicity of AgNPs in T. thermophila. The study highlights the importance of combining physiological assays with gene expression analysis in elucidating the mechanisms of action of NPs to reveal subtle cellular responses that may not be detectable in bioassays. In addition, our data filled the gaps on the toxicity of AgNPs for environmentally relevant and abundant organisms. The parallel study of two wild type strains allowed us to draw conclusions on strain to strain variability in susceptibility to AgNPs.


Assuntos
Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Tetrahymena thermophila/fisiologia , Antioxidantes , Expressão Gênica/efeitos dos fármacos , Íons , Metalotioneína/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Compostos de Prata , Tetrahymena thermophila/metabolismo
7.
J Hazard Mater ; 189(1-2): 603-8, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21435778

RESUMO

The effects of bulk- and nano-sized CuO and ZnO particles on biogas and methane production during anaerobic digestion of cattle manure were studied for a period of 14 days at 36 °C using the ISO 13641-2 guidelines. Biogas production was severely affected at concentrations of bulk and nanoparticles over 120 and 15 mg/L for CuO and 240 and 120 mg/L for ZnO, respectively. EC50 concentrations for methane inhibition were estimated to be 129 mg Cu/L for bulk CuO, 10.7 mg Cu/L for nano CuO, 101 mg Zn/L for bulk ZnO and 57.4 mg Zn/L for nano ZnO. The solubility of CuO nanoparticles in the reaction mixture was observed after 14 days of incubation and was significantly higher than the levels observed for ZnO. These results are of significant importance, as it is the first time that the effects of metal oxide particle size on biogas and methane production have been studied.


Assuntos
Bactérias Anaeróbias/metabolismo , Biocombustíveis , Cobre/química , Esterco/microbiologia , Metano/biossíntese , Óxido de Zinco/química , Anaerobiose , Animais , Bovinos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...